ER stress and subsequent activated calpain play a pivotal role in skeletal muscle wasting after severe burn injury
نویسندگان
چکیده
Severe burns are typically followed by hypermetabolism characterized by significant muscle wasting, which causes considerable morbidity and mortality. The aim of the present study was to explore the underlying mechanisms of skeletal muscle damage/wasting post-burn. Rats were randomized to the sham, sham+4-phenylbutyrate (4-PBA, a pharmacological chaperone promoting endoplasmic reticulum (ER) folding/trafficking, commonly considered as an inhibitor of ER), burn (30% total body surface area), and burn+4-PBA groups; and sacrificed at 1, 4, 7, 14 days after the burn injury. Tibial anterior muscle was harvested for transmission electron microscopy, calcium imaging, gene expression and protein analysis of ER stress / ubiquitin-proteasome system / autophagy, and calpain activity measurement. The results showed that ER stress markers were increased in the burn group compared with the sham group, especially at post-burn days 4 and 7, which might consequently elevate cytoplasmic calcium concentration, promote calpain production as well as activation, and cause skeletal muscle damage/wasting of TA muscle after severe burn injury. Interestingly, treatment with 4-PBA prevented burn-induced ER swelling and altered protein expression of ER stress markers and calcium release, attenuating calpain activation and skeletal muscle damage/wasting after severe burn injury. Atrogin-1 and LC3-II/LC3-I ratio were also increased in the burn group compared with the sham group, while MuRF-1 remained unchanged; 4-PBA decreased atrogin-1 in the burn group. Taken together, these findings suggested that severe burn injury induces ER stress, which in turns causes calpain activation. ER stress and subsequent activated calpain play a critical role in skeletal muscle damage/wasting in burned rats.
منابع مشابه
iNOS as a Driver of Inflammation and Apoptosis in Mouse Skeletal Muscle after Burn Injury: Possible Involvement of Sirt1 S-Nitrosylation-Mediated Acetylation of p65 NF-κB and p53
Inflammation and apoptosis develop in skeletal muscle after major trauma, including burn injury, and play a pivotal role in insulin resistance and muscle wasting. We and others have shown that inducible nitric oxide synthase (iNOS), a major mediator of inflammation, plays an important role in stress (e.g., burn)-induced insulin resistance. However, it remains to be determined how iNOS induces i...
متن کاملDetection of the MicroRNA expression profile in skeletal muscles of burn trauma at the early stage in rats.
BACKGROUND Severe burn injuries are associated with a persistent hypermetabolic response, which causes long-term loss of muscle mass that results in a clinical negative balance of nitrogen and muscle wasting. MicroRNAs (miRNAs) play a critical role in post-transcriptional regulation of gene expression, which negatively regulates gene expression by promoting degradation of target mRNAs or inhibi...
متن کاملBurn injury impairs insulin-stimulated Akt/PKB activation in skeletal muscle.
The molecular bases underlying burn- or critical illness-induced insulin resistance still remain unclarified. Muscle protein catabolism is a ubiquitous feature of critical illness. Akt/PKB plays a central role in the metabolic actions of insulin and is a pivotal regulator of hypertrophy and atrophy of skeletal muscle. We therefore examined the effects of burn injury on insulin-stimulated Akt/PK...
متن کاملHypermetabolism and hypercatabolism of skeletal muscle accompany mitochondrial stress following severe burn trauma.
Burn trauma results in prolonged hypermetabolism and skeletal muscle wasting. How hypermetabolism contributes to muscle wasting in burn patients remains unknown. We hypothesized that oxidative stress, cytosolic protein degradation, and mitochondrial stress as a result of hypermetabolism contribute to muscle cachexia postburn. Patients (n = 14) with burns covering >30% of their total body surfac...
متن کاملTitle efficacy of phosphodiesterase 5 inhibitor on distant burn-induced muscle autophagy, microcirculation, and survival rate.
Skeletal muscle wasting is an exacerbating factor in the prognosis of critically ill patients. Using a systemic burn injury model in mice, we have established a role of autophagy in the resulting muscle wasting that is distant from the burn trauma. We provide evidence that burn injury increases the autophagy turnover in the distal skeletal muscle by conventional postmortem tissue analyses and b...
متن کامل